NASA: National Aeronautics and Space Administration NASA Goddard Space Flight Center Home Page NASA Jet Propulsion Laboratory Home Page
NASA Logo - Goddard Space Flight Center NASA | GSFC | JPL | Site Map
SEARCH NASA
Aquarius satellite image Aquarius title
Education: Student Outcomes

Filtered by outcome: 5-8q1
Click here to begin a new search
Outcome: Explain the energy conversions found in the water cycle (e.g., evaporation requires heat energy, condensation releases heat energy).
Grade level: 5-8
Theme: water cycle
Activity: http://www.tos.org/hands-on/teaching_phys_concepts.pdf

Activity 4.5: Heat Flow and Latent Heat (p. 37-38). A good grasp of the underlying principles of thermal physics is essential for understanding how the ocean functions and how it impacts climate. Thermal physics is one of the science subjects that students are familiar with and experience on a daily basis, but intertwined with the experiential knowledge they bring to class comes a mixed bag of misconceptions that must be identified and addressed. Example misconceptions include an inability to differentiate between heat and temperature, the notion that transfer of heat will always result in a temperature rise, and a misunderstanding of latent heat. The purpose of this activity is to review basic concepts of thermal physics and highlight applications to ocean processes by focusing on the concept of latent heat.

When an object gains heat, two things can happen: the temperature of the object can rise, or the object can change its state without a measurable change in temperature (e.g., ice melting into water). Most materials have two state transitions: from solid to liquid and from liquid to gas. The heat needed to change the state of a material is called latent heat of fusion (for changing from solid to liquid) and latent heat of vaporization (for changing from liquid to gas). Latent heats of fusion and vaporization for water are high and have many important consequences for Earth's climate.

Videos
Flash Video | QuickTime Movie
Grade level: 5-8
Theme: water cycle
Video: hurricane_cloud_growth.flv

This animation depicts the hurricane cloud growth process. The release of latent heat (shown by orange "blobs") warms the surrounding air, making it lighter, which promotes updrafts (shown as blue arrows) and vigorous cloud development.

NASA's Tropical Rainfall Measuring Mission (TRMM) provides a closer look at hurricanes using a unique combination of passive and active microwave instruments designed to peer inside cloud systems and measure rainfall. TRMM allows scientists to study the combustion process in the hurricane engine and relate this process to intensification or weakening. (source)
Grade level: 5-8
Theme: water cycle
Video: hurricane_latent_heat.flv

This animation depicts the hurricane energy process. As water vapor is evaporated from the warm ocean surface, it is forced upward in towering convective clouds in the eyewall and rain band regions of the storm. As the water vapor changes from a gas to a liquid (cloud water), latent heat is released (shown by orange "blobs"). Red arrows show areas of low atmospheric pressure.

NASA's Tropical Rainfall Measuring Mission (TRMM) provides a closer look at hurricanes using a unique combination of passive and active microwave instruments designed to peer inside cloud systems and measure rainfall. TRMM allows scientists to study the combustion process in the hurricane engine and relate this process to intensification or weakening. (source)
Grade level: 5-8
Theme: water cycle
Video: hurricane_heat_engine.flv

This animation depicts the hurricane heat energy process. As water vapor is evaporated from the warm ocean surface, it is forced upward in towering convective clouds in the eyewall and rain band regions of the storm. As the water vapor changes from a gas to a liquid (cloud water), latent heat is released (shown by orange "blobs").

The release of latent heat warms the surrounding air, making it lighter, which promotes updrafts (shown as blue arrows) and vigorous cloud development.

Red arrows show areas of low atmospheric pressure. It is suspected that rapid bursts of cloud growth, particularly in the eyewall region of hurricanes, may relate to the intensification phase of a storm. (source)

Read Prerequisite Knowledge (p. 2-4).
Grade level: 5-8
Theme: water cycle
Activity: http://www.nasa.gov/pdf/62319main_ICS_Energy.pdf

Water is a key element of the Earth's energy balance. The Sun's energy drives the water cycle, and in turn, water is a major factor in governing the surface temperature of the Earth.

Read the section on Prerequisite Knowledge (p. 2-4).
Grade level: 5-8
Theme: water cycle
Video: water_everywhere_01.flv

 
Water is all around us, and its importance to nearly every process on earth cannot be underestimated. It is the only compound that can be found naturally as a liquid, gas, and solid. The process by which water moves around the Earth, from the ocean to the atmosphere to the land, and back to the ocean, is called the water cycle. Water regulates climate, storing heat during the day and releasing it at night, and carries heat from the tropics to the poles, by sea and by air.

Let's follow a single molecule of water, beginning in the ocean, through the paths it might take before eventually winding up right where it started - back in the big blue sea. The fuel for this journey will be provided by our planet's prime energy source: the sun. During the day, the sun heats up the air and ocean surface, causing water molecules to evaporate. Evaporation occurs when a liquid molecule of water escapes into the air as a gas.

This scientific visualization shows how water evaporation, indicated in turquoise, is driven by the energy of the sun. Notice how the rate of evaporation pulses over land: it speeds up during the day and almost disappears at night. Over the ocean, evaporation appears to remain constant, both day and night. Water in the air in gas form is known as water vapor. The molecule is now fresh water, having left the ocean salt and other particles behind. (source)
Grade level: 5-8
Theme: water cycle
Video: Evap_and_clock_IPOD.m4v.flv

This animation of evaporation shows how heating from the sun causes increased evaporation over land during the day. This video is a clip taken from Water, Water Everywhere which incorporates audio not included in this clip.

Water regulates climate, storing heat during the day and releasing it at night. Water in the ocean and atmosphere carry heat from the tropics to the poles. The process by which water moves around the earth, from the ocean, to the atmosphere, to the land and back to the ocean is called the water cycle.

This animation was created using data from the GEOS-5 atmospheric model on the cubed-sphere, run at 14-km global resolution for 30-days. Variables animated here include evaporation, water vapor and precipitation. This animation is time synchronous throughout the animation to allow cross fades during compositing. (source)
Grade level: 5-8
Theme: water cycle
Video: WC_evaporation_IPOD.m4v.flv

This animation of evaporation shows how heating from the sun causes increased evaporation over land during the day. This video is a clip taken from Water, Water Everywhere which incorporates audio not included in this clip.

Water regulates climate, storing heat during the day and releasing it at night. Water in the ocean and atmosphere carry heat from the tropics to the poles. The process by which water moves around the earth, from the ocean, to the atmosphere, to the land and back to the ocean is called the water cycle.

This animation was created using data from the GEOS-5 atmospheric model on the cubed-sphere, run at 14-km global resolution for 30-days. Variables animated here include evaporation, water vapor and precipitation. This animation is time synchronous throughout the animation to allow cross fades during compositing. (source)
Grade level: 5-8
Theme: water cycle
Video: WC_vapor_IPOD.m4v.flv

This animation portrays the flow of atmospheric water vapor around the world. This video is a clip taken from Water, Water Everywhere which incorporates audio not included in this clip.

Water regulates climate, storing heat during the day and releasing it at night. Water in the ocean and atmosphere carry heat from the tropics to the poles. The process by which water moves around the earth, from the ocean, to the atmosphere, to the land and back to the ocean is called the water cycle.

This animation was created using data from the GEOS-5 atmospheric model on the cubed-sphere, run at 14-km global resolution for 30-days. Variables animated here include evaporation, water vapor and precipitation. This animation is time synchronous throughout the animation to allow cross fades during compositing. (source)
Grade level: 5-8
Theme: water cycle
Video: WC_SST_IPOD.m4v.flv

This animation of sea surface temperature shows the transport of heat along the ocean's surface. This video is a clip taken from Water, Water Everywhere which incorporates audio not included in this clip.

Water regulates climate, storing heat during the day and releasing it at night. Water in the ocean and atmosphere carry heat from the tropics to the poles. The process by which water moves around the earth, from the ocean, to the atmosphere, to the land and back to the ocean is called the water cycle.

Data for this animation was derived from a model run of ECCO's Ocean General Circulation Model of heat along the ocean's surface. (source)
Grade level: 5-8
Theme: water cycle
Video: WC_rivers_IPOD.m4v.flv

In this animation, pulsing of the global rivers highlights the flow of water from the continents back into the oceans. This video is a clip taken from Water, Water Everywhere which incorporates audio not included in this clip.

Water regulates climate, storing heat during the day and releasing it at night. Water in the ocean and atmosphere carry heat from the tropics to the poles. The process by which water moves around the earth, from the ocean, to the atmosphere, to the land and back to the ocean is called the water cycle. (source)