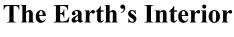
Understanding The Seafloor

Dr. Frank R. Hall

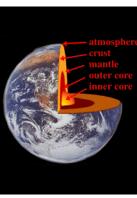
Geological Oceanographer University of New Orleans New Orleans, LA 2003 This is a presentation prepared in the Summer 2003 for the Gulf Coast COSSEE by Dr. Frank R. Hall

Slide 2

Resources for pictures, etc. used in this presentation


US Geological Survey	John's Hopkins University	University of Wyoming	
NASA	BayofFundy.com	American Museum of Natural History	
National Center for Atmospheric research	University of North Carolina	University of North Dakota	
Kohler, Inc.	NOAA	PlateTectonics.com	
VIMS	World Book Encyclopedia	amonline.net.au	
Columbia University	EPA	Bowling Green State University	

Slide 3


I'd like to thank

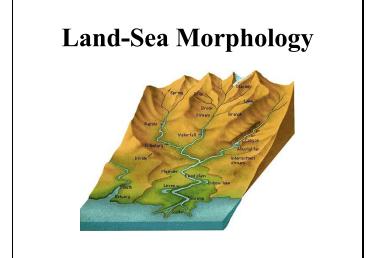
Dr. Robert Pockalny

University of Rhode Island for Use of His Video of a Mid Ocean Ridge

Slide 5

Three Rock Types on Earth's Crust

Granite



Gabbro

Slide 6

Where does the seafloor begin?

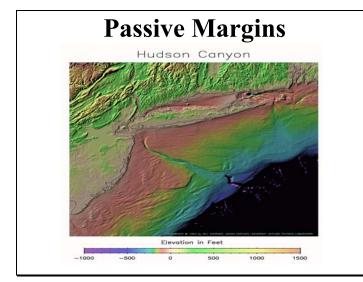
- > We have a terrestrial bias
- ➤ Earth's surface is > 70% water
- > 97% of this water is seawater

From the World Book Encyclopedia

Slide 8

Bathtub by Kohler

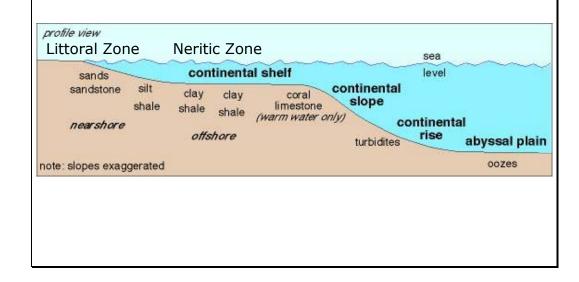
Water Facts


Water source	Water volume, in cubic miles	Percent of total water
Oceans	317,000,000	97.24%
Icecaps, Glaciers	7,000,000	2.14%
Ground water	2,000,000	0.61%
Fresh-water lakes	30,000	0.009%
Inland seas	25,000	0.008%
Soil moisture	16,000	0.005%
Atmosphere	3,100	0.001%
Rivers	300	0.0001%
Total water volume	326,000,000	100%

Source: Nace, U.S. Geological Survey, 1967 and The Hydrologic Cycle (Pamphlet), U.S. Geological Survey, 1984

Slide 10

Map of the Seafloor



An example of the structure of passive continental margins. Notice the delta lobe at the bottom. These are called "Deep-sea fans".

Slide 12

Passive Margin Profile

Continental Shelf

Littoral (0-20m) Neritic (20-500m)

Slide 14

Littoral Zone

Shallowest, Tidally Influenced Where the Oceans meet the Land

- ➤ Marshes
- ➤ Estuaries
- ➤ Beaches, Bars, Barrier Islands, Cheniers
- ➤ Coral Reefs
- ➤ Deltas

Slide 15

Hurricane Lili: 2002

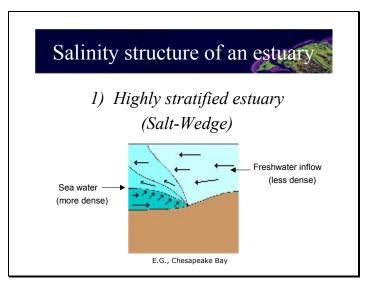
Severe storms impact the Littoral zone

Marshes

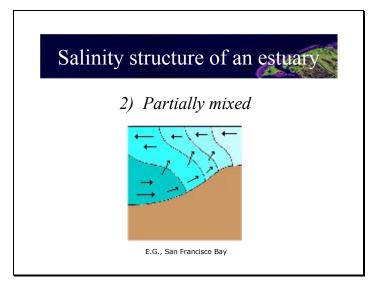
- ➤ Habitats for many forms of life
- ➤ Typically quiet in terms of currents
- ➤ Sediments are typically fine-grained (muds)

Slide 17

Estuaries

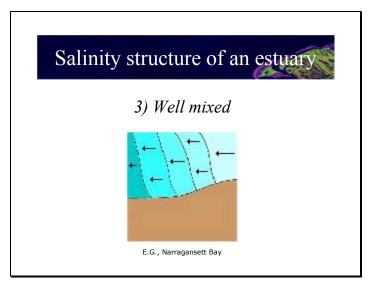

Semi-enclosed
water bodies
There are four
kinds of estuaries

Satellite Image of Delaware

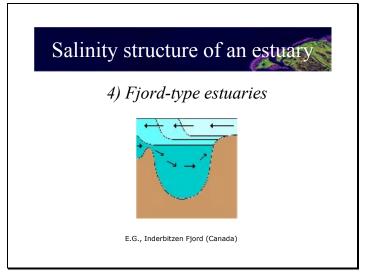

and Chesapeake Bays

The following four slides are from the University of North Carolina

Slide 18



Large riverine inputs: Fresh water floats on top of salt

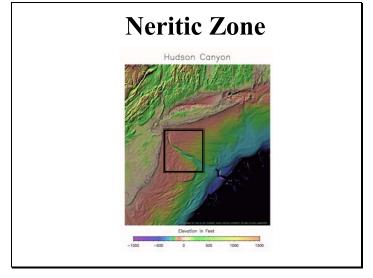

Tides mix salt water into fresh

Slide 20

Low riverine inputs, large tidal influence mixes waters

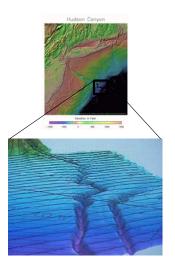
Slide 21

Only found where glaciers have influenced the coast.



Slide 23

Deltas

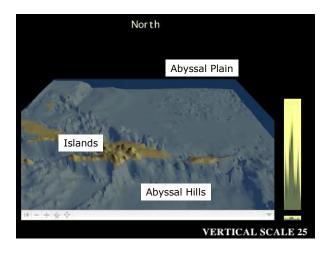


On most passive margins, neritic zones are basically inactive. That is to say, sediments are typically not being delivered to this part of the shelf by rivers. A notable exception is the Shelf off Brasil where the Amazon River brings sediemnts up to the shelf break.


Slide 25

Continental Slope

The Hudson Canyon is an example of an incised feature on continental slopes. Passive margins, canyons are typically inactive


Continental Rise Deep-Sea Fans

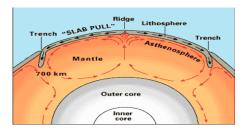
USGS Image of the Mississippi River fan

Slide 27

The Abyss Nares Abyssal Plain

Abyssal Hills exist under the abyssal plain: the sediment cover results in a smooth seafloor.

(Mid) Ocean Ridges aka Spreading Centers



- The longest, continuous feature on the Earth's Crust.
- A volcanic
 mountain chain that
 stretches around
 the world

In the Atlantic and Indian Oceans, the Ridge is indeed in the "Middle". Hoewever, in the pacific, it is on the eastern side of the basin. Thus, it is called the "East pacific Rise". Breakes along the path of the ridge are called "Fracture Zones" or "Transform Faults".

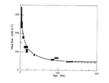
Slide 29

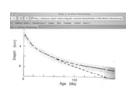
Spreading Centers and **Plate Tectonics**

At spreading centers, new seafloor is crated as hot, molten rock rises through the volcanoes. This is the upward movement of convection cells within the mantle.

The Graben of the East Pacific Rise

Video taken from the Alvin on the East Pacific Rise in 1994

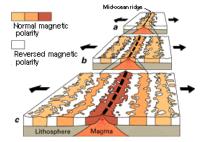



(From Dr. Robert Pockalny, University of Rhode Island)

A graben is a depression. In this case, it denotes the axial valley associated with the east pacific Rise.

Slide 31

Heat Flow and Plate Tectonics



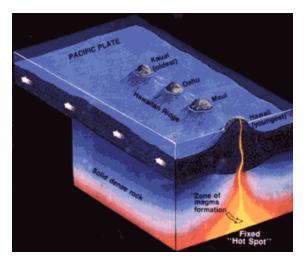
- As you move way from the spreading center, you move into older oceanic crust older seafloor
- As the seafloor ages, it slowly cools, increases in density, and sinks to deeper depths.

Slide 32

Spreading Centers: Evidence of Plate Tectonics

Magnetic Stripes that Parallel the Ridge

Trenches: Subduction Zones

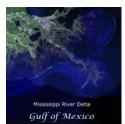


The seafloor around Australia has the Philippine Plate colliding with the Pacific Plate that dives underneath forming a trench.

At subduction zones, older ocean floor, that began at the spreading centers, dive into the mantle. Earthquakes are very common in areas of subduction.

Slide 34

Hot Spots The Formation of Hawai'i


Your homework assignment relates to this phenomenon. Are hotspots permanent features on the Earth?

Deep-Sea Sediments Four Sources

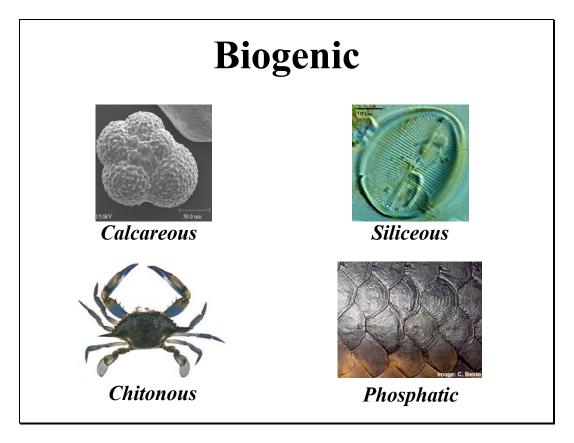
- > Terrigenous (derived from land)
- ➤ Biogenic (remains of organisms)
- ➤ Chemical (usually as precipitates)
- > Extraterrestrial (micrometeorites and tektites)

Slide 36

Terrigenous

Rivers

Glaciers


Wind

Icebergs

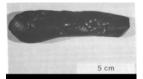
Terrigenous Volcanic Eruption: Mt. Pinatubo

Slide 38

Phosphatic includes things like fish scales and bones.

In addition to calcareous foraminifera, there are also "agglutenated" varieties that make their shells out of surrounding sediment.

Chemical


Black Smoker from a Hydrothermal Vent

Slide 40

Extraterrestrial

Meteorite

Tektite

- ➤ Meteorites impact the Earth from outer space.
- Although grouped with "extraterrestrial" objects, tektites are actually created from Earth materials that are ejected into the air when a meteorite hits.

Slide 41

Homework Assignment

HOTSPOTS are thought of as "fixed" features on the Earth's surface, but are they really?

This will be your homework assignment:

Examine and report on new data that suggests that the Hawaiian Hotspot moved over time. Prepare a 3-5 page (1 inch margins, 1.5 linespace, 12 pt Times New Roman font) report on Hotspots and the implications of the Hawaiian Hotspot moving.

Examine the results of Ocean Drilling Leg 197: http://www-odp.tamu.edu

