Select an Author:
Select a Center:
Most Common Tags:
Climate change (39)
Arctic Ocean (25)
Changing Arctic Sea Ice (17)
Ocean and Climate Literacy (9)
ROLE Model Webinar (9)
concept mapping (8)
Ocean Acidification (8)
Alaska Marine Ecosystems (7)
Communicating about Climate Change (7)
Marine Ecosystem Science (7)
07.28.10 webinar (5)
08.10.10 webinar (5)
10.06.10 webinar (5)
Bering Sea (5)
Communicating Science (5)
Culturally-relevant Science Education (5)
carbon cycle (4)
Carbon Cycling (4)
educator post (4)
hydrothermal vents (4)
scientist post (4)
10.20.10 webinar (3)
Alaska K-12 Science Education (3)
Changing Species Distributions (3)
Gray Whale (3)
Herring (3)
icebergs (3)
network (3)
network science (3)
networks (3)
oil spill (3)
Polar Bear (3)
Walrus (3)
02.16.11 webinar (2)
11.03.10 webinar (2)
aerosols (2)
AGU (2)
Alaska Native Perspectives on Climate Change (2)
Changes in Alaska Marine Ecosystems (2)
Changing Ocean Current Patterns (2)
conferences (2)
graduate students (2)
Gulf of Alaska (2)
Humpback Whales (2)
leadership (2)
MSP (2)
Salmon (2)
SEWG (2)
Temperature Patterns (2)
Traditional Knowledge (2)
03.23.11 webinar (1)
09.22.10 webinar (1)
11.17.10 webinar (1)
12.01.10 webinar (1)
Alaska Marine Ecosystem (1)
Alaska Natives (1)
Arctic Ecosystems (1)
Arctic Sea Ice (1)
ASLO (1)
Atlantic Crossing (1)
biological pump (1)
Bowhead Whale (1)
carbon sequestration (1)
case study (1)
Changes in Ocean Current Systems (1)
Changing Alaska Marine Ecosystems (1)
chemical oceanography (1)
Climate Change Impacts on Alaska Marine Ecosystems (1)
Climate Change. Sea Level Rise (1)
climate intervention (1)
collaboration (1)
Collaborative Research (1)
communicating (1)
COSEE New England (1)
COSEE SouthEast (1)
data (1)
Deepwater Horizon (1)
Education and Outreach (1)
EE Week (1)
ENTs (1)
estuaries (1)
Global Climate Change (1)
groups (1)
Gulf of Mexico (1)
Gulf Stream (1)
Hear the Answer (1)
Heat storage in the Ocean (1)
informal science education (1)
Intertidal Community Ecology (1)
iron (1)
K-12 Science Education (1)
King Salmon (1)
Lesson plans (1)
lobsters (1)
Long-term Temperature Patterns (1)
Marine Ecosystems (1)
Methane Hydrates (1)
microbes (1)

No, Not That PAH!
09/13/2010 | Catherine Cramer, (OCEAN)
Tags: chemical oceanography, case study

Crystal structure of a hexa-t-butyl derivatized hexa-peri-hexabenzo[bc,ef,hi,kl,no,qr]coronene
Part of creating a Case Study about chemical oceanographer Rick Keil is understanding what his research is all about. And reading about his research projects entails encountering things like acronyms. As in "The lab also has the capability to investigate other compound types including simple sugars, organic acids, Polycyclic aromatic hydrocarbons (PAHs) and alkanes." So what are "PAHs"?

Wikipedia tells me, "Polycyclic aromatic hydrocarbons (PAHs), also known as poly-aromatic hydrocarbons or polynuclear aromatic hydrocarbons are potent atmospheric pollutants that consist of fused aromatic rings and do not contain heteroatoms or carry substituents.[1] Napthalene is the simplest example of a PAH. PAHs occur in oil, coal, and tar deposits, and are produced as byproducts of fuel burning (whether fossil fuel or biomass). As a pollutant, they are of concern because some compounds have been identified as carcinogenic, mutagenic, and teratogenic. PAHs are also found in foods. Studies have shown that most food intake of PAHs comes from cereals, oils and fats. Smaller intakes come from vegetables and cooked meats.[2][3][4]"

Which makes sense, considering that "the goal of Rick’s lab is to understand the factors that control organic matter preservation in marine and freshwater systems, with a focus on mechanisms that control the extent to which bacteria degrade different forms of organic matter." (BTW, that's my writing, not Wikipedia!)
(Photo: Crystal structure of a hexa-t-butyl derivatized hexa-peri-hexabenzo[bc,ef,hi,kl,no,qr]coronene, reported by Müllen and coworkers in Chem. Eur. J., 2000, 1834-1839. The t-butyl groups make this compound soluble in common solvents such as hexane, in which the unsubstituted PAH is insoluble.)

Back to Blogs - Home