ABOUT MARILYN
SORT BLOGS
Select an Author:
Select a Center:
Most Common Tags:
Climate change (39)
Arctic Ocean (25)
Changing Arctic Sea Ice (17)
Ocean and Climate Literacy (9)
ROLE Model Webinar (9)
concept mapping (8)
Ocean Acidification (8)
Alaska Marine Ecosystems (7)
Communicating about Climate Change (7)
Marine Ecosystem Science (7)
07.28.10 webinar (5)
08.10.10 webinar (5)
10.06.10 webinar (5)
Bering Sea (5)
Communicating Science (5)
COSEE OCEAN (5)
Culturally-relevant Science Education (5)
carbon cycle (4)
Carbon Cycling (4)
educator post (4)
hydrothermal vents (4)
scientist post (4)
10.20.10 webinar (3)
Alaska K-12 Science Education (3)
Changing Species Distributions (3)
Gray Whale (3)
Herring (3)
icebergs (3)
network (3)
network science (3)
networks (3)
oil spill (3)
Polar Bear (3)
Walrus (3)
02.16.11 webinar (2)
11.03.10 webinar (2)
aerosols (2)
AGU (2)
Alaska Native Perspectives on Climate Change (2)
Changes in Alaska Marine Ecosystems (2)
Changing Ocean Current Patterns (2)
conferences (2)
graduate students (2)
Gulf of Alaska (2)
Humpback Whales (2)
leadership (2)
MSP (2)
Salmon (2)
SEWG (2)
Temperature Patterns (2)
Traditional Knowledge (2)
03.23.11 webinar (1)
09.22.10 webinar (1)
11.17.10 webinar (1)
12.01.10 webinar (1)
Alaska Marine Ecosystem (1)
Alaska Natives (1)
Arctic Ecosystems (1)
Arctic Sea Ice (1)
ASLO (1)
Atlantic Crossing (1)
biological pump (1)
Bowhead Whale (1)
carbon sequestration (1)
case study (1)
Changes in Ocean Current Systems (1)
Changing Alaska Marine Ecosystems (1)
chemical oceanography (1)
Climate Change Impacts on Alaska Marine Ecosystems (1)
Climate Change. Sea Level Rise (1)
climate intervention (1)
collaboration (1)
Collaborative Research (1)
communicating (1)
COSEE New England (1)
COSEE OLC (1)
COSEE SouthEast (1)
data (1)
Deepwater Horizon (1)
Education and Outreach (1)
EE Week (1)
ENTs (1)
estuaries (1)
Global Climate Change (1)
groups (1)
Gulf of Mexico (1)
Gulf Stream (1)
Hear the Answer (1)
Heat storage in the Ocean (1)
informal science education (1)
Intertidal Community Ecology (1)
iron (1)
K-12 Science Education (1)
King Salmon (1)
Lesson plans (1)
lobsters (1)
Long-term Temperature Patterns (1)
Marine Ecosystems (1)
Methane Hydrates (1)
microbes (1)

Blogs
Arctic Food Webs Affect Mercury in Polar Bears 12/8/09
12/18/2009 | Marilyn Sigman, Alaska SeaGrant/MAP
Tags: Climate Change, Arctic Ocean

University of Michigan News Service 12/8/09

With growing concerns about the effects of global warming on polar bears, it's increasingly important to understand how other environmental threats, such as mercury pollution, are affecting these magnificent Arctic animals. New research led by biogeochemists Travis Horton of the University of Canterbury and Joel Blum of the University of Michigan lays the groundwork for assessing current and future effects of mercury deposition and climate change on polar bears. The study appears in the December issue of the journal Polar Research.

Mercury is a naturally occurring element, but some 150 tons of it enter the environment each year from human-generated sources such as coal-burning power plants, incinerators and chlorine-producing plants. Deposited onto land or into water, mercury is picked up by microorganisms, which convert some of it to methylmercury, a highly toxic form that builds up in fish and the animals that eat them. As bigger animals eat smaller ones, the methylmercury is concentrated—a process known as bioaccumulation. Sitting at the top of the food chain, polar bears amass high concentrations of the contaminant.

By looking at chemical signatures in hair samples from museum studies, the study showed that polar bears that get most of their nutrition from phytoplankton-based food webs have greater mercury concentrations than those that participate primarily in ice algae-based webs.

"If you want to understand the potential effects of changing ecosystems on polar bears, you need to be aware of the existence of these two food webs, which may possibly be affected by sea ice," Blum said. "This work provides background information that will be important in our in-depth understanding of mercury bioaccumulation in polar bears."

More



<< High-latitude Seas “Pre-conditioned” for Increased Acidification; Evidence of Surface Acidity Now Stretches from Hawaii to Alaska Back to Blogs - Home Global Warming Reducing Russian Polar Bear Population 12/9/09 >>